170 research outputs found

    The short-time critical behaviour of the Ginzburg-Landau model with long-range interaction

    Full text link
    The renormalisation group approach is applied to the study of the short-time critical behaviour of the dd-dimensional Ginzburg-Landau model with long-range interaction of the form pσspspp^{\sigma} s_{p}s_{-p} in momentum space. Firstly the system is quenched from a high temperature to the critical temperature and then relaxes to equilibrium within the model A dynamics. The asymptotic scaling laws and the initial slip exponents θ\theta^{\prime} and θ\theta of the order parameter and the response function respectively, are calculated to the second order in ϵ=2σd\epsilon=2\sigma-d.Comment: 18 pages, 4 figures, 1 tabl

    Noncommutative Einstein-Maxwell pp-waves

    Get PDF
    The field equations coupling a Seiberg-Witten electromagnetic field to noncommutative gravity, as described by a formal power series in the noncommutativity parameters θαβ\theta^{\alpha\beta}, is investigated. A large family of solutions, up to order one in θαβ\theta^{\alpha\beta}, describing Einstein-Maxwell null pp-waves is obtained. The order-one contributions can be viewed as providing noncommutative corrections to pp-waves. In our solutions, noncommutativity enters the spacetime metric through a conformal factor and is responsible for dilating/contracting the separation between points in the same null surface. The noncommutative corrections to the electromagnetic waves, while preserving the wave null character, include constant polarization, higher harmonic generation and inhomogeneous susceptibility. As compared to pure noncommutative gravity, the novelty is that nonzero corrections to the metric already occur at order one in θαβ\theta^{\alpha\beta}.Comment: 19 revtex pages. One refrence suppressed, two references added. Minor wording changes in the abstract, introduction and conclusio

    Driven Heisenberg Magnets: Nonequilibrium Criticality, Spatiotemporal Chaos and Control

    Get PDF
    We drive a dd-dimensional Heisenberg magnet using an anisotropic current. The continuum Langevin equation is analysed using a dynamical renormalization group and numerical simulations. We discover a rich steady-state phase diagram, including a critical point in a new nonequilibrium universality class, and a spatiotemporally chaotic phase. The latter may be `controlled' in a robust manner to target spatially periodic steady states with helical order.Comment: 7 pages, 2 figures. Published in Euro. Phys. Let

    Addenda and corrections to work done on the path-integral approach to classical mechanics

    Full text link
    In this paper we continue the study of the path-integral formulation of classical mechanics and in particular we better clarify, with respect to previous papers, the geometrical meaning of the variables entering this formulation. With respect to the first paper with the same title, we {\it correct} here the set of transformations for the auxiliary variables λa\lambda_{a}. We prove that under this new set of transformations the Hamiltonian H~{\widetilde{\cal H}}, appearing in our path-integral, is an exact scalar and the same for the Lagrangian. Despite this different transformation, the variables λa\lambda_{a} maintain the same operatorial meaning as before but on a different functional space. Cleared up this point we then show that the space spanned by the whole set of variables (ϕ,c,λ,cˉ\phi, c, \lambda,\bar c) of our path-integral is the cotangent bundle to the {\it reversed-parity} tangent bundle of the phase space M{\cal M} of our system and it is indicated as T(ΠTM)T^{\star}(\Pi T{\cal M}). In case the reader feel uneasy with this strange {\it Grassmannian} double bundle, we show in this paper that it is possible to build a different path-integral made only of {\it bosonic} variables. These turn out to be the coordinates of T(TM)T^{\star}(T^{\star}{\cal M}) which is the double cotangent bundle of phase-space.Comment: Title changed, appendix expanded, few misprints fixe

    Drived diffusion of vector fields

    Get PDF
    A model for the diffusion of vector fields driven by external forces is proposed. Using the renormalization group and the ϵ\epsilon-expansion, the dynamical critical properties of the model with gaussian noise for dimensions below the critical dimension are investigated and new transport universality classes are obtained.Comment: 11 pages, title changed, anisotropic diffusion further discussed and emphasize

    Topological Yang-Mills Theory with Two Fermionic Charges. A Superfield Approach on K\"ahler Manifolds

    Full text link
    The four-dimensional topological Yang-Mills theory with two anticommuting charges is naturally formulated on K\"ahler manifolds. By using a superspace approach we clarify the structure of the Faddeev-Popov sector and determine the total action. This enables us to perform perturbation theory around any given instanton configuration by manifestly maintaining all the symmetries of the topological theory. The superspace formulation is very useful for recognizing a trivial observable (i.e. having vanishing correlation functions only) as the highest component of a gauge invariant superfield. As an example of non-trivial observables we construct the complete solution to the simultaneous cohomology problem of both fermionic charges. We also show how this solution has to be used in order to make Donaldson's interpretation possible.Comment: 41 pages, LaTeX. Section about Donaldson cohomology revised and completed. To be published in Nucl. Phys.

    Toward a new hybrid proton conductor: lanthanum niobate layered perovskites as a source of tailorable surfaces

    Get PDF
    The modification of metal oxide surfaces with organic moieties has been widely studied as a method of preparing organic-inorganic hybrid materials for various applications. Among inorganic oxides, the ion-exchangeable layered perovskites [1], materials composed by perovskite-like slabs and intercalated cations, stimulated authors\u2019 interest in reason of some encouraging electronic and reactive properties. In particular it is well known that the interlayer surface of such materials in their protonated form can be easily functionalized with organic groups (such as alcohols [2-3] or organophosphonic acids [4]) thus allowing the production of stable hybrid materials with new electronic and reactive features. As a first step to design a new inorganic-organic hybrid proton conductor, a comprehensive theoretical investigation of the MLaNb2O7 (M=H, Li, Na, K, Rb and Cs) series of ion-exchangeable layered perovskite is presented. In particular, their structural and electronic properties have been investigated by periodic calculations in the framework of DFT. A general very good agreement with the available experimental data has been found. The protonated compound (HLaNb2O7) has been then functionalized with imidazole trying two different settings: in the first arrangement the molecule is adsorbed on the layered oxide exposing the interlayer surface, in the second the organic moiety is just put between two perovskites slabs. This latter model, including the effect of the confinement, allowed to better reproduce the experimental structural XRD data and 13C-NMR measurements of the hybrid system. [1] Schaak, R. E. and Mallouk T. E., Chem. Mat. 2002, 14, 1455-1471. [2] Takahashi S. et al., Inorg. Chem. 1995, 34, 5065-5069. [3] Suzuki H. et al., Chem. Mater. 2003, 15, 636-641. [4] Shimada, A. et al., Chem. Mat. 2009, 21, 4155-4162

    Soft capacitor fibers using conductive polymers for electronic textiles

    Full text link
    A novel, highly flexible, conductive polymer-based fiber with high electric capacitance is reported. In its crossection the fiber features a periodic sequence of hundreds of conductive and isolating plastic layers positioned around metallic electrodes. The fiber is fabricated using fiber drawing method, where a multi-material macroscopic preform is drawn into a sub-millimeter capacitor fiber in a single fabrication step. Several kilometres of fibers can be obtained from a single preform with fiber diameters ranging between 500um -1000um. A typical measured capacitance of our fibers is 60-100 nF/m and it is independent of the fiber diameter. For comparison, a coaxial cable of the comparable dimensions would have only ~0.06nF/m capacitance. Analysis of the fiber frequency response shows that in its simplest interrogation mode the capacitor fiber has a transverse resistance of 5 kOhm/L, which is inversely proportional to the fiber length L and is independent of the fiber diameter. Softness of the fiber materials, absence of liquid electrolyte in the fiber structure, ease of scalability to large production volumes, and high capacitance of our fibers make them interesting for various smart textile applications ranging from distributed sensing to energy storage

    Diagnostic performance and reference values of novel biomarkers of paediatric heart failure

    Get PDF
    Objective: Biomarkers play a pivotal role in heart failure (HF) management. Reference values and insights from studies in adults cannot be extrapolated to the paediatric population due to important differences in pathophysiology and compensatory reserve. We assessed the diagnostic utility of four novel biomarkers in paediatric HF. Methods: Midregional (MR) pro-atrial natriuretic peptide (proANP), soluble ST2 (sST2), growth differentiation factor-15 (GDF-15), MR-pro-adrenomedullin (proADM) and N-terminal pro-B natriuretic peptide (NT-proBNP) were measured in 114 patients and 89 controls. HF was defined as the presence of HF symptoms and/or abnormal systolic ventricular function. Receiver-operating characteristics were plotted, and the area under the curve (AUC) was measured. This was repeated for subgroups with cardiomyopathy and congenital heart disease (CHD). Ventricular systolic function was measured by magnetic resonance or echocardiography. Reference values were calculated according to the current guidelines. Results: The AUC for diagnosing HF was 0.76 for MR-proANP (CI 0.70 to 0.84) and 0.82 for NT-proBNP (CI 0.75 to 0.88). These parameters performed similarly in the subgroups with CHD and cardiomyopathy. By contrast, MR-proADM, GDF-15 and sST2 performed poorly. When used in conjunction with NT-proBNP, no parameter added significantly to its diagnostic accuracy. NT-proBNP, MR-proANP, GDF-15 and sST2 could accurately discriminate between patients with preserved and patients with poor functional status. In a subset of patients with dilated cardiomyopathy, NT-proBNP, MR-proANP, MR-proADM and GDF-15 were associated with poor LV function. Conclusions: MR-proANP could accurately detect HF in children and adolescents. Its diagnostic performance was comparable with that of NT-proBNP, regardless of the underlying condition. Reference values are presented
    corecore